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MINIMUM INDUCED DRAG IN WIM(3-~USELAGIE INTERYF3CRENCE*

By Perry & Pepper
#

SUMMARY

By means of a general theorem founded on the basis of
Prandtl~s theory of the lifting line. a method is derived
for obtaining the minimum induoed drag of airfoils in the
proximity of ideal internal boundaries. The theorem is
applied to the case of an ideal wing-fuselage combination
consisting of a lifting line intersecting an infinitely
long circular cylindrical fuselage to determine the effect
of wing height on the minimum induced drag. The case of
ideal combinations with constant circulation is aleo con-
sidered in detail. ae it has been treated erroneously ia a
previous analysis. The analysis preeented here incidental-
ly reveals some errors in previous work on aerodynamic
theory.

IIl!tRODUOTIOl!? -

The approximations of the Prandtl theory of the finite
airfoil (reference 1) permit the general solution of the
problem of minimum induced drag of isolated airfoils and
airfoil systems (references 2. 3. and 4). This problem has
also been solved by Lennert!z (reference 5) for a particular
case of wing-fuselage interference. in which the ,ideal fuse-
lage consists of an infinitely long circular cylinder with
the airfoil in the midwing position. These solutions sug-
geeted a theorem that would solve the problem of minimum
induced drag for the most general case of wing-fuselage in-
terference, in which any number of wings of any front ele-
vation and any number of Ideal fuselages (infinitely long
cylinders) of any aross section are admitted.

~hie note presents this general solution as well as
an important applicatlont the determination of the minimum
.————.. -— — —— .——.—.

*Based on q thesis accepted by the Graduate Division of the
College of Engineering of New York University in partial
fulfillment of the requirements for the degree of Doctor of
Engineering Science.
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2 NACA Z!echntcal ITote ITo. 812

induced drag of wing-fuselage monoplane combinations with
ideal circular fuselages and varying wing height. In or-
der to prove the theorem, it was found necessary first to
repeat in a new form eertai.n portions of the basic aerody-
namic theory because of an error discovered in the work of
Trefftz (reference 3). This error does not affect !Crefftzls
results but its correction is important in the present anal-
yBis*

Accordingly, the first portion of this note deals with
the derivation of analytic expressions for the lift and the
induced drag of the finite airfoil and includes an eqlana-
tion of the Trefftz error as well as that of a certain par-
adoxical statement by Prandtl on the application of the mo-
mentum theorem to the flow about the finite airfoil;” Wie—
rest of the paper contains the establishment of the general
solution of the minimum drag problem and its application to
high-wing and low-wing combinations, including the deter-
mination of load distributions. It was found that the in-
terference effect for combinat3.ons with constant circula-
tion has been treated erroneousl~- by Lennertz (reference 5).

;

The corrected analy6is IS presen~ed-here in an-appendix. -
.—.

The writer is very grateful to Dr. K. Friedrichs, Pro-
fessor of Applied Mathematics at New York University, for
his guidance and assistance in the pre@”aration of this note.
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LIFT AND INDUCED DRAG OF THE FINITE AIRFOIL ANfi ‘- .

WING-FUSELAGE COMBINATION —-——
.3.

For simplicity, the analytic expressions for +ke lift
and the induced drag will be derived first for the single :i
airfoil; the results will then be extended to include the
presence, of an ideal fuselage.

.——~

Analytic Expression for Lift ~orce
—

In the first approximation of Prandtlls airfoil theory,
the airfoil is regarded as a lifting line; that is, a lin-
ear succession of elements of small chord, each possessing
a certain profile and angle of attack. Weak loading is as-
sumed and the vortex sheet produced by the motion of the
airfoil is regarded as a semi-infinite plane strip with
straight vortex lines parallel to the direction of motion.

.-—
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In this analysia. the lifting line is taken as lying at
f;

rest along the x-axia in an infinite body of fluid that
\l,..

has a velocity of magnitude V parallel to the z-axis, at
l:’8

an infinite distance before the airfoil. Both the air-
/$ ~

foil and the flow are assumed symmetrical with respect to
the yz-plane. !J?Irevelocity field of the fl!uid is repre- - ‘-
sented by a vector of components, Q=, C?y, @z+ V, where

@ is the velocity potential arising from the presence of
the airfoil and its attendant vortex sheet, ~= is

a@/~x, @y ia ?M/~y, and #= is i%P/~% The assump-

tion of weak loading is equivalent to the inequality:

Also, at an infinite distance before the airfoil,

@x=@y=a?z=o

In the application of the momentum theorem to this
flow, the airfoil is considered enclosed in a very large
rectangular box of fluid with center at O and with faces
A, B, C, D, E, and F, as shown in figure 1. The
total upward force acting on the enclosed fluid is

~y=-L. [Y’ p d5 dx (3)
.

A-B

where L is the lift on the airfoil, p is the static
pressure of the fluid, and the subscript A-B indicates
that the integral extends over A with positive sign and
over B with negative sign. The pressure is determined
from the Bernoulli equation

or

P ~-= ;pv=pvti=- ~. (0=2 + !$Ya+ @z2) (4)
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where p IB density and H is total pressure. This rela-
tion is valid everywhere in the simplY connected region
outside the vortex sheet.

Under the inequality (l), the last term of equafion
(4) can be neglected, so that

P -E-= :pv= -g)v#z (5)
—.

If this expression is inserted in the integral of equation
(3), it will reduce to

where ~, a, s,
r-

and 4 are “the edges of the box shown in
figure 1. If the faces C and D are removed to z = - m
and z = + m, respectively, the velocity potential @ as-
sumes the same constant value on 3 as on 4; and when the
other four faces are removed to x = & m, y = A m, re-
spectively,

J([pdz dX= - () V
f

@dx=-pV
V

@ dx

“A-B “1-2 z
..

.

I

, .!

+[@dx-~@dx+[@dx)=PV~@dx (7)

where the added terms,
J

@ dx and
i

@ dx, vanish
● 6

because dx vanishes on the edges 5 and 6, and where the
last integral sign and subscript denote integration around
an infinitely large contour in the counterclockwise sense
in the plane D at z =+ ~.

The total upward force, F-v, is equal to the time
rate of change of the y-compone~t of the momentum of the
enclosed fluid: -. —

‘Y == d My/dt (8)

““d,:,’

. . . .— —~m.~ - - 1“ Ii”--”lii ““’-”- - lm -
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i-a

As the flow is stationary, the y-component is just the :’$

amount transported per unit time through the sides of the
.-.;~

box, with outgoing momentum taken positive:
k!8
~j:

d~y

H
P@y(@z+V)dxdy+

1!
~ P @7a dx d%

m=

D-C

~J
-f

A-B

+ P #y @= dy dz (9)

F-E

Of the six integrals on the right-hand side, the la8t four
may be neglected together with the terms in @z in the

first two, from the inequality (1), For the infinitely
large box, the integral taken over C vanishes as well,
and

dMy
=pv

Jf
(PY dx dy

K
D

(lo)

where the integration extends over the entire XT plane, D,
~~

at z which is regarded as bounded by the trace,

I

,1=+0,
T, of the vortox sheet.

!
,
i
?7

Tho analytic expression for L is obtainod from equa-

t

,-

tions (3), (7), (8), and (10):
ri!{
‘[

L = .pv
f~

@ydxdy-PV
J

@ dx (11)

D w

This result can be transformed by integration by parts:
n

If J J
4.

-pv @ydxdy=-PV @dx+PV @ dx (12) fl
(f

D
SO that

T @
R

{

. r P
L P? @dx=PV I’dx (13) i=-

‘iT ‘L

where L and R reprosont tho left and tho right odgos ;1

of the vortex shoot, r(x) is tho distributtou of circula-

tion. along the airfoil span, and where the relation, ●

r@a-@b= (14)

........
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.—

has been used., @a being the velocity potential on the up-””
.-—

per surface of the sheet and tb~ that on the lower sur.

face. Equation (13) represents the Kutta-Joukoweki law .3

for the finite airfoil.
*

In his application of the momentum theorem, Trefftz
.

(reference 3) obtained the result (13) but on the basis of ,
two omissions whose effects cancel. Ho first omittod the
contribution of tho prossuro forcos to the lift in equa-
tion (7) and then omitted the corresponding integral in tho
partial Integration of equation (11). This error did not

.--j

.4

affect his results for he used only the form given hero by :

equation (13). In tho ensuing analysis, howovor, the prop- ~
or form .of equation (11) is of docisivo importance.

-— —-a
~

Analytic Expression for Induced-Drag Foroe
●.?
—

The analytic expression for the induced drag is ob- ““ ‘A
tained in a similar manner by applying the momentum theo-
rem to the z-component of forces, except that in this case
the second-order terms must be retained, Again, attention
is first restricted to the finite box enclosing the air-
foil. The force in the z-direction acting on the enclosed -
fluid iS

Fz=-Di-
Jf

p dx dy (15)

D.-G .- d..— 4.-.:.
where Di is the induced-drag force ac”ti~g~”tfi~””a~~~o”il~” ‘n-.——

By the use of equation (4) this expression can be written I
as: .-..—-.._____ ....-.

“+

Jr
..-5

Fz = -,Di+~ (Qxa +!3=2+@za +2V 0=) dx dy ‘- I(16) ,
L
D-C

The z-component of momentum transported through thi” sides” – ‘-
of tho box per unit time is:

dhiz

== If
P (OZ+V)2 dx dy

D-C

+ JJ P(@z+V) @x dy dz (17)

F-E

.———__ ..__.—.-. . . ._

Lr
——

-1- P (@z+V) @y dX dz

A-B .-

t -.. _ —-
:

-u , .,.-— .- . . i

.r?-
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Canceling the terms in V=, this expression is conveniently ‘“”3

rewritten as; i:‘8

+pv
J

@zdxdy+p V
VJ

@z iiX dy

-c -c

+
J

@y dx dz +
~

#x dy dz
).

A-B -E

The quantity within the last parentheses is,

(18)

(19)

from the continuity of the fluid flow, in which the surface
integral extends also over the airfoil surface where &3/~n
vanishes identically. In this expression dS is an ele-
ment of surface and n is the coordinate normal to the
surface of integration. Then from equations (16) and (18),
the relation

3= = ali=~dt (20)

reduces to:

Di+ Jr (Q:+ o;- @%a) dxdy- P
I

@z @y dx dz

-c A-B

-P J (t?Z #x dy dz

Ii’=-E

When all the sides of the box are removed to infinity,

Q==@y=@z=O on O

0==0 on D
}

(21)

(22)

.

I.1
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so that the integral extending over O vanishes. While
the last four integrals are nominally of the same order
as the first, because the sides A, B, E, and 3 are now
infinitely distant from the vortex sheet, the last four in-
tegrals are actually of higher order and can be neglected.
Hence,

Dp!j Jr(@=a+ #y%) dx dy (23)

where the Integration extends over the entire vertical
plane at z = + ~ bounded by the trace of the vortex sheet.

—
.- .—

Ideal Wing-Fuselage Combinations
_——— —

In order to treat the problem of wing-fuselage interf-
erence, the fuselage is idealized in a manner due to
Lennertz (reference 5). The fuselage is taken ae an infi-
nitely long cylinder, extending from z = - ~ to z = + m,
of any cross section, with generators parallel to the z-
axis. The airfoil is taken as a lifting line lying in the
xy-plane. The vortex sheet is taken as the cylindrical sur-
face lying between z = O and z = + m, passing through
the lifting line, with geners.tors (vortex lines) parallel
to the z-axis. Consequently, with such an ideal wing-
fuselage combination, the contour bounding the plane D
at z .+cn now consists of two parts: The oross section
of the fuselage, denoted henceforth by the letter F and
the trace T of the vortex sheet. The entire contour is
designated C!.

The reason for this particular choice of fuselage
shape Is the following one. If the vortex sheet is re-
flected in the plane, z = O, the velocities of the re-
sulting flow in thie plane will be twice as large as those
arising f~om the original vortex configuration, 31~t the
resulting flow is that induced by an infinitely long vortex
sheet and must be exactly equivalent to the two-dimensional
flow existing in the plane Dat%=+m. Thus, the x-
and the y-components of the fluid velocity in the plane z =
O have just one-half the values of the velocity components
at the corresponding points (those with the same values of
x and Y) in the plane at z = + @. In particular, the
downwash velocity at any point on the lifting line will be
one-half the downwash velocity at the corresponding point
on the trace of the vortex sheet in the plane D. For any
other type of fuselages the vortex lines will not be straight

v- ‘
4:, i

@

:

“.._. .—. —— . .

-m
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lines; so that in general the trace in the plane D has
neither the same shape nor the same length as the lifting
line and the downwash at the wing now becomes a complicated
function of the downmash at the trace. In this way, the
“two-dimensional” character of the problem is lost.

Evidently, the derivations of equations’(n) and (23)
for L and Di are unaffected by the presence of such

ideal fueelages. Then

L =- pv
J!

QFdxdy-pV
J

@ dv
.

=-
J

‘-~~i~-’’l”d’

(24)

In general, neither of the laet two integrals vanishes, so
that the lift on such a wing-fuselage combination consists
of two parts - a lift on the wings and a lift on the fuse-
lage. The lift on the fuselage arises from the aerodynam-
ic pressure distribution over the cylinder eurface and is
to be considered as induced by the presence of the wings,
because the lift on an isolated fuselage of the type con-
sidered here $s zero. For fuselages of this type, these
induced pressure forces are normal to the cylinder surface,
that is, parallel to the xy-plane, and can only contribute
to the lift. For any other type of fuselage, the resultant
of the induced pressure forces on the fuselage will not be
parallel to the xy-plane, in general, so that these forces
will contribute to the drag of the combination as well.

Lift and Induced Drag in Terms of a Gomplex Variable

It is useful here to transform the expressions for L
and Di in still another manner so as to employ the com-

plex variable x -I-iy. The flow in the plane D iS two-
dimensional and the stream function, ~, satisfying the
equations,

(25) ‘,!

.. .. ..—, . ...
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can therefore be introduced. Then

L =- pv Jraraxdy-pv
[

G ax
. ● .-

=pv
Jf

@=dxdy-PP
J

0 ax

As F is a rigid houndaryg it must be a streamline of the
flow in the plane D, so that

w = const. on 3’
and

f

Qd~=O

--

AS the vortex sheet contains no sources or sinks, Q %s

continuous in crossing T, so that

!
llldy=o

“T

Thus the expression for the lift reduces to
—

L ,pv=-

J
(@dx - Wdy)

= - P V R.P. r
f(z) dz (26)

where the symbol R.P. represents the real part of the
quantity following it (in general, complex); z now repre-

sents the complex variable, x + iy, and f(z) is the

flow function (complex potential) of the tmo-dimensional
flow in the plane D,

f(z) = @ (X,y) + i * (X,y) (27)
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The expression for D~ ean also be written directly

in terms of * or of f(z):

(28)

The expressions for L and Di in terms of f(z)

are valid, of course, when no fuselage is present and ~
be regarded as the analogs of Blasius$ formulas for the
infinite airfoil. The results of this analysis as givan
in equations (26) and (28) are not original; both expres-
sions have been obtained by Prandtl (reference 1) by some-
what different considerations.

Prandtl~s Paradox

Prandtl (referenoe 1) concludes that the applicattin
of the momentum theorem to the flow about the finite atr-
foil yields different results for the contribution of the
pressure forces and the momentum transport to the lift-
depending on the order in which the faces of the box are
removed to infinity. A r%gorous analysis shows that this
general conclusion is correct but that his precise state-
ment is entirely inaccurate. In the notation of figure 1,
his statement is;

‘If an airfoil, situated in a medium unbounded in
all directions, is enclosed in a control surface in
the form of a parallelopiped, the application of the
momentum theorem for steady flows yields the follow-
ing results. If the bounding faces, A and B, C and
D, are first removed to infinity, and then the faces
B and F, the momentum theorem yields a momentum
transport arising from the vortex sheet, which is equal
to the lift. If the faces, A and B, E and ~, are
first removed, and then the faces, C and D, the vor-
tex sheet contributes nothing, but the momentum trans-
port arising from the bound vortices yields the lift.
Ptnally, if C and D, E and 3’, are first removed,
and then A and B, the momentum transport vanishes,
and the lift arises from the pressure forces- In
other cases, both the pressure forces and the momentum
transport are obtainedoU
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This statement is inaccurate for two rea$ons. The
removal of the faces A and B to infinity does not eliml-
mate the contribution of the preseure forces. This error
was also committed by Trefftz~ as indicated above. The
other reason is that the momentum transports in any case.
cannot be separated into contributions from the vortex sheet
and the bound vortices, Eor example. considering the momen-

. ..

turn transport across E and ?.

application of the Biot-Savart

from the vortex sheet and @y

vortices and the vortex eheet.

law shows that @x ari”aes”---”x”x”

arises from both the bound

-.
Thus, attention can be restricted to the coitriiutiori~” ““‘=.

of the pressure forces and the momentum transport. From
the analysis presented, it is clear that once the contri- “
bution of the pressure forces has been transformed into
the llne integral of equation (7), the faces A, B, c, 3s,
and F can be removed to infinite distance from the air-
foil in any order, for in the limit they contribute noth-
ing to the lift expression. Then the expression for L

i

becomes:
*;
i-——..— _ .._— —-

ff L

~>

L =. pv @ydxdy-pV * dx (29) :
.

.-.-.. —.
where now the plane of integration D lies at””~ny distance,=’~
Z>O* from the lifting line. Here the double integral ~
represents the contribution of the momentum transport to ‘*

the lift and the contour integral represents that of the
i.

pressure forces. *
;4

I* order to find the ratio of these contributions, it ~
is necessary to employ an exact expression for the velocity ~
potential 0. The vortex sheet is mathematically equivalent j
to a dipole layer, with dipole strength equal to the circu- j
lation. Hence, by the employment of a well-known formula
of potential theory, :.

bm .

rf
-<

[ ,Q(X,Y,Z) = - ~; r (q $; (X.x)a

-“b o
.-+ :

+ y8 + (Z-Z)=
1

dE dZ (30) ;

—, .-..—— ~
>
_
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where b is the semispan of the wing, and r(x)

,1
is the ““3

distribution of circulation along the span. This expres-
sion for the potential has been furnished hy K. Frledrichs ~ ‘0
and is much simp}er,than the Yourier integral expression
derived by von Karraan (referonco 6)- If equation (30) is

‘):

intogratod with respect to Z
? :’“%.

!;1+1;~

Q *@l+&a
!5=

b

:“ x
where

!

b -I ‘j ‘k”
ox (X,Y) = * r(~) y [(X-=)2 + y=] d= (31) t . .

“-b

is the potontial of the two-dimensional flow at z = + =0
1

i
Jand .

b

@a(x,y,z) = &
f

p(=) Y E(x-~)a + Ya]-% z

-b -+
[(x-~)a -1-y2 + Z2] d=

Evidently,

(32)

Xirst, consider the plane D at an infinite distance l’!!.
from the airfoil. Then @ = @l~ and

b [

f
Qldx=&

Jf
r(=) Y E(x-5)2 + Y21-1 d= dx

i

,.

‘Cn m -b ‘
Then

~~

fl

and from equation (29)

-Pv
fr

@y ax dy = *L
.,

,!,-.~..I......._
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Now let D be at any finite distance
airfoil. Then,

P . P -

z from the

But for finite z,

J @=dx~O aS
[x’ + “r-m

so that in this case$

--—

Ir-Pv #y dx dy = ~L
. .

-- : ..-
These distinct results yield the conclusion that if

,.—..—

the faces A and B, E and F are first removed to infin-
ity and then the faces C and D, the pressure forces con-
tribute one-quarter of the Ilft and the momentum trans-
port contributes threo-quartors. If, on tho othor hand,
the faces O and D are first removed to inffnity and then
the faces A and B, E and F, in either order, the pres-
sure forces contribute one-half the lift and the momentum’
transport contributes one-half, In other cases, on-e o-f““
these two r,esults will be obtained, depending only on
whether D is the last face to be romovod~

Mathomatioally, this peculiar result arises from a dis-

continuity at z = + = in tho expression,
J

@(X,y,Z) dx.

m

Physically, it signifies that any distinction between the-.
contributions of ~ressure
the lift is an Artificial
is in an unbounded fluid.

forces and momentum transport to
one, at least when the airfoil

—.. .——
Bm

-—.
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MINIMUM INDUCED DRAG IN WING-FUSELAGE INTERFERENCE

The problem of minimum induced drag consists in mini=
izing the itiduasd drag under the aondition of given lift.
This is an isoperimetric problem in the caIculus of varia-
tions, which consists in determining the analytic function,
f(z) 8 which makes

Dl=~
Jf

/fi(z)l 8 dx dy
.

a minimum, with

L =. P V R*P.
J

f(z) dz
u,

given, or in short,

8Di=0, &2Di > 0, with 6L = O (33)

In the case of wing-fuselage interference, this problem
contains mixed boundary conditions, which are conveniently
expressed in terms of the stream function, ~. The fuee-
lage crose section is a rigid boundary of the flow in the
complex z-plane, so that ~ is cOn5tant on the CrOSS sec-
tion, 3?; the trace of tile vortex sheet contains no
sources or sinks so that * is continuous in crossing the
trace. Hence, the boundary conditions are;

If =0 on 1’ (34)

~a=~bonq (35)

where the subscripts a and b refer to values directly
above and below the trace, respectively.

This problem has been solved by Lennertz (reference 5)
for the particular case of a midwing combination with cir-
cular fuselage by employing the method of images which, in
fact, is available for this one case only. By means of a
generalization of Lennertz~s result, the solution of the
general variational problem contained in equation (33) and
the boundary conditions of equations (34) and (35) has been
found to lie in the following theorem.

..1

.. ....----- -.
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THEO REM : The analytic function, f(z), which minim-
izes the induced drag with given lift and satisfies
the boundary conditions, is the sum of two analytic
functions: one is the flow function of the downward
potential flow about the fuselage boundary, the other
is the flow function of the upward potential flow
about the entire bo,unding contours C, consisting of
the fuselage cross section and the trace of the vor-
tex sheet, where the two flows have equal and oppo-
site velocities at infinity.

To prove that equation (33) is satisfied by the flow
function, f(z), advanced in the theorem, let

1

——-._

f(z) = f=(z) + f=(z)

!
or

f
(36)’

.. —._
where fl(z) = 01 -1-i$l is the flow function of the down-
ward flow about the fuselage cross section, and _f=(z) =
o= + iwa is the flow function of the upward flow about -.
the entihe bounding contour C. These functions’ satisfy
the boundary conditions, for

—

* Z=W2=0 on ~...... _
[.3;).;- “a,

.—..
lJ==O onT

(38) <’

:
and, from the regularity of fl(z) outside F,

-.

i3*z
w, ()

W*
= *lb and ~,a . -

()~bon T “-”-1(39) :’
a

$— .+
where G l.sthe direction normal to the trace and pointing ‘,
into the fluid region.

_-— :,
No W

,.,
—+

L =- pv
J

(@dx - Wdy) -9
*-

m
. so that

4.

1

-3”

SL=-p V (60 dx - 8$ d~) (40) ;“.
~
-4.

-. ~
.+
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Also,
.,

Di~~
ff

(v=’ + Qya) dx dy
. .

so that

= PJJ(WLX Wx +

I-P
ff

(W.x w=.
Using Greenls theorem:

(41)

where v is the iiirection normal to the bounding curves
and pointing into the fluid region, and ds is a line ele-
ment of the boundtng curve. But

On 1?, 6* vanishes by virtuo of equation (34). Tho SOC-

ond integral is

from equation (39). Also

from equation (37}. Hence, equation (42) reduces to:

“f
+’

-,.
;L
;,.
..:
-::1-“ ---- r- . . .



-i -“.$
● ;.

J?’orthe normal direction chosen hero for tho infinitely
large contour, the Cauchy-Riemann equations are:

...

-.—.—

Integrating the second term by parts,

6Di=-P
f

(8$ d$ - 60 dva) (45)

.Co

From the definitions of fl (z) and fz(z) given in the
theoram,

—.

where c is a real, positivo constant with tho dimensions
of PoloCity. Evidently, tho gonoral velocity vector,
(ox, @y, 02), is proportional to c, so that from the “i-n-

equality (1),
.-—

c <<v

From an insertion of the limiting values of Q% an
in equatio~ (45)

from equation (40), If the variations are restrict
those that make 6LI= O, in accordance with oquatl
tho function f(z), advanced in the theorem, makes

6Di = O

that is, makes Di

i

an extremum.

:i .r__,....TH ~ .....—

(47)

d $a

“(48): “-’

ed to
on -(33),

(49)
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In order to show that the resulting Di is really a
minimum, let

where $ and ~~ are now any two functions satisfying the
boundary conditions given In equations (34) and (35). Then

In this equation, let .* be the stream function of f(z),
the flow function of the theorem, and 8* any variation of
~ that satisfies the boundary conditions and makes 6L = O.
Then, from equations (41) and (49),

112Di ‘$, 8* =6 Di = O (52)

so that

;:r:;J:::::]:s ‘“negative”‘en’”‘i ‘sa‘inimum.
A similar argument shows that this W (and consoquont-

ly, i(z)) is uniqu~ to within a constant, II’orsuppose
any et-her stream function W satisfying the boundary con-
ditions also minimizes Dig so that

(54)

Then the difference, 5* = ~~ - ~, is an admissible varia-
tion, and

so that from equation (54)

1 ~]Di ‘6V,6’ = O

and
8*=*’- *= const. (55)

,.
+:
.4
.f:
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where th. last relation follows from the positive definite
charactar of the forma Di [W,WJ

I’inally, it is possible to derive a simple relation
botwoon the minimum Induoed. drag and the (giwen) lifte
Iloplaclng 6@ and 8V in equations (40) and (41) bY 0/2

;:; :;2, respectively, 811 is replaced by L/2 and
Di ● Hence, equation (48) is replaced by the rela.

tion,

(56)-

The theorem ostablishod is significant in several ro-
spects~ First, it is quite general in that it applitis ‘m
any combination whatsoever, providod, only that the fuselage
is of the type specified. For it is olear from the mathe-
matical analysig that the combination could consist of any
number of fuselages, each of any cross section, of any num.
bor of wings, of any front elevation, and lying in different
planes.

—
Second, the theorom contains all the previous solu-

tions in tho problem of ninimum induced drag as special
casoeb For when there is no fusolago, tho downward flow of
the theorem reduces to a simple rectilinear flow and the
upward flow is just that around the trace of the vortex
shoot (of which several may bo present). This case is the
well-known condition of constant downwash derived by Munk
(roferonce 2) and used by him and othors to find tho mini-
mum drag of Isolatod airfoils and systems of airfoils (ref-.

k’ oroncos 1 and 4). As previously mentioned, the solution
obtained here was used by Lennertz to find the minimum drag

k “: of a particular ideal combination, De Hailer (reference 7)

t;

l?: has found the minimum drag of an airfol.1 in proximity to
?: ; tho ground. This solution can be immediately established

{!i
by means*of an obvious extension of the precedtng theorem
to include the presence of external boundaries.

~;:
4? The theorem reduces the ontire probl~m o-fminimun drag
k.
I
J

to tho determination of tho roquirod flow function, that,:,1.
} is, a problon of conformal mapping,... E’or a given typo of

a ;~ t:

II
combination, the detcrnination of the roquirod napping is

~-:‘ gonorally a difficult taske Ono easo of particular intor-
4c, ost can bo solvod expltoitly, namely, the high- or the low-

.iy:i

/

wing nonoplano oonbination with circular fuselagoo-- The

j: rest of this paper is linito& to tho analysis of this caso

#J. and sono related aonsiderations$

J
j;
J._..-—— .—.— . -

~ml I m- “-i–””-”—”–—-
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HIGH- AND LOW-WING MONOPLANE COMBINATIONS

WITH CIRCULAR FUSELAGE

Only the high-wing combination will be Zreated in de-
tail here, for, as will be shown later- it is exactly equiv-
alent in the thpory to the low-wing combination. !Che ideal
combination is shown in figure 2. The fuselage is an infi-
nitely long ctrcular cylinder with axis parallel to OZ.
The wings (lifting lines) lie along the X axis. The fuse-
lage radius is taken as the unit length, and the semispan
(distance from wing tip to plane of symmetry) is called b.
Like all other lengths appearing here, b is a nondimen-
sional quantityc Such an ideal combination is the first
approximation to an actual nonoplane combination with a
long fuselage and wings of chord lcqgth small conparod with
both tho span length and tho fuselage radtus.

Tho bounding contour in tho plane at z = + OEI con-
sists of a circlo roprosonting tile fusolago cross soctiom.
and two horizontal linear sogmonts (double lines) repre-
senting the trace of the vortex sheet, as shown in figuro
3. Let @ TT be the .anglo botwoen tho positive Y axis and
the.radius to the projection of the wing root on this
plane, as shown. Then the height of tlie wings above the
fuselage axis is Cos p l-r.

The Conformal Mapping

In order to find the minimum induced drag in terms of
the given lift, as well as the various related aerodynamic
quan~ities for-this combination, it is necessary to find f’

the flow functions defined in the theorem of the preceding J..——..-— .——& .
:*

soctiou. Tho first of thoso, fl (z), represents tho down- ;?

ward flow about tho fuselago contour (th~ circlo of fig. 3).
,,
Lt

This function is:
-f.;,
i,{

( 1
fl(z) =ic z + i Cos pi-r -

)
(57)

z + i Cos pi-r
jf

Tho flow function, f~(z), of tho upward flow about the
\
i

whole contour of figuro 3 is quite complicated but can be
~

obtained implicitly by conformal mapping.
:~

.

The analytic function, 1.....I

J,,,-............
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. ,... .-.--i,.- .—-—— ._____ .—

t
1

log
z+sin$n

‘28in@n Z-sinpll

.

(58) ;,

maps the exterior bf t-ne whole contour in the z-plane on
a region in the ~-plane bounded by straight lines, as s’hewn
in figure 4. The point at infinity in the z-plane 3s
mapped on the origin of the ~-plane, and the points E and
A of the ~-pl.ane have the coordinates:

—.

.

“.-
,

~
This region of the ~-plane is now napped conformably ~

on tho upper half of a conplox t-plane by tho Schmarz-
Christoffel nethod, as shown in figure 5. The point G of ;
tho ~-plo.ne is mapped on the potnt at infinity of the t- :
plane, mnd the other two arbitrary points on the reel axis ‘.
of the t-plane are chosen as the point O labeled C and .;
tho point +1 labeled D in figure 5. The differential ~~
equation is: ~

LL=k t= - d=
dt (t2 - na) (t= - 1)

.. +-

(60) ‘.

where d and n are the coordinates of E and F “<in-the ‘;
t-plane. Integration of equation (60) and evaluation of
the constants ytelds as the mapping funotion, ~

.

1

[ 1

.

t = plog~+(l.p)log- (61) ;
2sin~n

mhera tho pnrametors a and n depend
through tho relations,

+

d2

b+sinpm
log

b- sin (3TT

(62) ;?

p) log L/-+” (63) ‘“- ;
3

4

The origin of tho ~-piano is napped on a point on the imag- ~“.->

: i-
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inary axis of the t-plane, t = i El, where

the relation,

n = S1 cot I($
-1

1) cot-’ s~
I

L

Equations (62), (63) , and (64) per~a~
unthenatical parameters St, n,

physical paranoters, b and P.

Tho flow ‘function in the t-plane
fa(z) is:

23

s% satisfies

(64)

the evaluation of the
d in terms of the

corresponding to

(65)

where

2C(t)sin (3I7 -
IT(t) = e 1 (66)

. .

The Mininum Induced Drag

The mintmun Induced drag of the combination is given
by

where

L =. P v R.P.
1

f(z) dz

Ca

=-
{P V R.Pa f~(z) dz

Um
From equation (57)

- P V R.Po
{

fl(z) dz=-2v PVC’ (67)
m

Tha second intogrul in tho oxprossion for L is evaluated
by transforming it into the corresponding integral in tho
t-piano.

i.. .- -.-, . . -



_.. .

Ij
, ...‘t
i

24 NACA Technical Note Moo 812

<

- P v R*P.
J f

fa(z)dz=PV’ 3’=(t) Z1 (t) alt

m “ t=is~

By expansion of F* (t) and ~! (t) about t = i 81, one

finds

r
P V R,P. o F=(t) ~t(t) dt

dt=is~ - *
.

Q -.. .

where N(t) 3s defined by equation (66). Addin.y-eqUations “-~
(67) and (69),

L = mpvc/M(b,@) (70) :

where

‘= 2[MY{[:N12

1

M(b, @)
4

~ r~l’t (iS ~) 1 + J-2 (71)

Then

‘Lain
= ~pc2/2M(b, P) (7/2)

Eliminating c between equations (70) and (72),

Di li2= -< M(b,f3)
xntn 2nPv

(73)

Equation (7%) expresses tho dopendonoo of the mininum in-
duced drag of the combination on the given lift in terms
of the nondimensional lengthe used in this section. The
corresponding dimensional expression is:

(74)

where R is the fuselage radius.

~

x
-.

For given lift,
*

n~ varioe directly with M(b,f3)e ~
r3in a

This quantity has boon evaluated nunorically and is shown G
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in figure 6 as a function of tho wing height, 00s p m,
for sovoral values of b. Tho values for ncgativo wing
heights have been found fron a relation to he dorivod latar
in this section.

Tho Intorferonco Effect #

The effect of tho presenco of tho fuselago upon the
mininun induced drag can be found by coxaparing that of tho
coxabtnations with that of an isolated lifting line of the
sane span length and total lift, With tha use of nondi-
nonsional lengths, tho nininua induced drag of t’ho isolatod
wing is:

(75)

Honoo, tha rolativo incroaso in tho nininun induced drag
of tho combination as oonpared with that of tho isolated
wing is:

Dt - D’,
uin %in

I(b,@) = = b2 M(b,~) - 1 (76)

D\nin

&he dependence of this ‘interference coeff~cient’t on the
semispan b and the wing height Cos p ~ is shown in
figure 7.

The Low-Wing Combination

The case qf the low-wing combination is treated by
considering a combination of aemispan b and of wing
height - Cos @ n = Cos(l - p) m. The minimizing flow
function for this oombinati.on represents the superposition
of the downward flow about the fueelage cross section and
the upward flow about tha entiro contour in the z-plane.
When the axes are rotated through 180°, this combination i-s
transformed into the corresponding high-wing combination of
semispan b and wing height Cos p n while the minimiz-
ing flow function is transformed into - f(z)*
f(z)

where
is the minimizing flow function for the high-wing

combination. Hence, all the relations previously obtaiaed
are equally valid for tho low-wing combination and, in
particular, this argument yi.olds the important results:

: i*

{
- +.-.

i’,,

. .- ... . .



.--n

-.

26 NACA Technical Noto No. 812

M(b, $) = M(b, 1 - p)

I(b, 13) = I(b, 1 - p)
}

(77)

These relations have already been used in plotting figures
6 an~ 7.

The complete equivalence of high-wing and low-wing
combinations in this thoorotical first approximation is not
rofloctod in oxporimental results (references 6 to 13), in
which the presence of the boundary layer creates a funda-
mental difference between th~ two typos of combination.
For unfillotod combinations, tho oxporimcmts show that the
drag characteristics of high-wing combinations are much
superior to thoso of tho low-ning typo but that the lift
characteristics are nearly the same, tho high-wing combina-
tion being only slightly superior.

-,-J

LOADING PROPERTIES 03’ WING-3’USELAGE COMBINATIONS

As indicated in connection with equation (24), the
lift on wing-fuselage combinations is composed of a lift
force on the wings and a lift force on the fuselagea In
this section, the &istribution of these loads over the com-
bination width is determined and, in particular, the “effect
of changes in the wing height is investigated. Uxcessivo
calculations are avoidod by treating in detail only the
case of tho oxtromo high-wing combination. (f3= O); tho
midwing case has already been treated by Lennertz (roforonce
5), but some considorationi is made also of combinations with
internediato wing heights. This treatment automatically in-
cludes tho caso of the oxtroao low-wing combination @ = 1),

‘ Detornination of Lift Distributions
—

Tho bounding contours in tho z-piano for such an ox-
trome high-wing combination is shown in figuro 86 I’r0x3

equation (24),
.—. - --—

L =LF+Lw .
wher o

—
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is tho lift on tho fusolago and

27

is tho lift on tho wings. Writing #
.

whoro @l and 0= aro the velocity potentials of the down-

ward and the upward flows of tho thoorcna rospoctivcly,

‘1? = ‘b” + ‘2Y
whero

n

Tho distribution of lift across the fuselage width is thoro-
foro defined %y the equation:

dLF dLIF dL2F

C=x — = PV (@la-@lb) + PV (@2a-@2~)+ dx

whore dLF /dx is tho lift por unit length in the x-direction
and the subscripts a and b refer to the top and the bot-
tom sides of the fuselage section. The quantities, dLIF/dx
and dL2F/dx may 30 regarded, for the purposos of this sec-
tion, as partial lift distributions arising from the sepa-
rate flow functions, f~ (z) and f=(z). From equation {57),

9with = O:

f=(z) =i c
(

1
)

z+i-——————
Z+i

so that

(78) i ..
f

!l .. . . .. ....
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This oxprossion represents an elliptic distribut”ton of neg-
ative lift across the fuselage width or, so to speaks the
downward flow gtves rise to a downward thrust on the fuse-
lage.

In order to find dL2F/dx, the distribution of @a

over the fuselago cross section must be determined. Zhi S

distribution of potential Is obtained from the mapping
proooss described in tho procoding sectiom by taking tho
limit p = o* In this way, it is found that the function,

c = l/z (79)

maps the exterior of the contour in the z-plane on a region
in the t-plane bounded by the straight lines shown in fig-
ure 9. This r~gio~i is mapped on the upper hmlf-plane shown
in figuro 10 by the function

.-

(80)

whoro the paramotor n doponds on th~-”somispan, bi—
through the rolatiom,

:,1

I

:i, .;

1’
.=:... ——...———~, Tho imago in tho t-piano of tho point at infinity of the - ;

~L1 z-piano lies on the imag3.nary axis at ;

1

;!‘:,{
.— .—. 4

,x;..4>
. .——-—

t i SL
.-

=
:3,’ .
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the boundary (real axis) of the half t-plane is doterrni.nod.,
and through equations (79) and (80), the corresponding po-

tential distribution along the bounding contour of the z-
plane. Eence, the lift distributions

can be found from this graphical method. Calculations have
been performed for the cases b = 2 and II = 6 and tho
results are illustrated in figures 11 and 12$ which also
show dLIE/dx (given by oquatiom (78)) as WOII as tho to-,
tal lift distribution, dLF/dx. Thoso curves show that the
lift on tho fuselage, given by tho area under tho curvo for
dLF /dx in each case, is negativo as can be domonstratod by
olemontary considerations. Tho curves of figures 11 and
12 show tho Va~UOS of dLIF/dx, dL2~/dx, and dLF/dx,

each divided by tha convoniont factor, 2TTPVC. Tho ~C-

tual values in each case, of course, dopond on the tatal
lift on tho combination, and may be found from tho ro~a-
tion,

*PVC= 2L/M(b,O)

The lift distribution on the wings is fcund by tha
same method except that for tho wings only @a contrib-

utes to tho lift. Tho results for b = 2 and b = 6 aro
showm in figures 13 and 14. Theso distributions do not
differ markedly from elliptic distributions.

Lift Distribution ovor Fusalago Width

It has boon shown that the lift on the fuselage is
negative in e~tremo high-wing combinations with minimum
induced drag. From olonontary considerations, ono is also
led to expect negative lift on the fuselage in similar com-
binations with constant circulation. This case has already
been investigated by Lonnertz (roforence 5), who obtained
a Fositive fuselage lift. This result has been found to be
erroneous; tha corrected analysis of this caso is presontod
hero in the appendix.

For the sako of complotonoss, tho loading distribu-
tions over tho co~bindtion width havo boon plotted to a con-
venimt soale for eight ilifforent cases in figures 15, 16,

-,

—

ih

-t
‘,..

- --k
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ii’, and 18 to show the dependence
wing height, the span length, and
lation ovor the wing length. Tho

.._. —..
. . . . .. . . .

NOO 812

of the loading on the
the distribution of circu-
scalo in these diagrams

is choson so that the maxtmum circulation, occurring at tho ~
win= roots. is the same in all cases. Tke distributions E
for”oxtrem& high-wing combinations with minimum induced
drag aro takom from tho preceding four figures, whilo thoso
for hfgh-wing combl,nations with constant circulation. havo
boon plotted from tho results of tho analysis in tho appen-
dix- .Tho other four cases for midwing combinations are
taken. from tho results of Lonnortz. In those figures,”-~o
lift distributions over the fuselage width for the high-
ming combinations are given by the curves lying below the
horizontal axis and inside the vertical lines marking the
fuselage width-

As regards the load on the wings, the principal ”dif~ ‘“
,foronce botwoon the oxtrome high-wing (or low-wing) combl-
nationt and tho midwing combination of tho same span Ieng-th,
2b , is that tho formor pessoss larger wing Iongth,
2(b - sin. /3~). Thus, for a given total load on tho combi-
nation.and a given span length, tho load on tho wings is
higher for the oxtromo high-wing (or low-wing) combination,
tho moro so bocauso for those combinations, the lift on tho
fusolago is nogativo so that tho load on the wings is actu-
ally groator than tho kotal lift on tho combination

Tho fundamental difforonco botwoon tho extreme hlgh-
.———

wing (or low-wing) and midwing combinations is that in the
high- or low-wing cases, the fuselage lift is negative,
while in the midwing, it is positive. This interesting
result is indicated by tho curves shown in fi@rO 190
Thoso curves show tho dopondonco of tho ratio of fuselage
lift to total lift on the combination, that is, LF/L, “Oil

tho somispau b for various typos of combination. Tho
curvos, A and B, for midwing combinations are taken from
the resu~ts of Lennertz; the curves, O and D, for ex-
treme high-wing combinations, are found, respectively, from
equation (A-15) of the appondi.x and frou the analysis of
this section; the curvo for a conbinatiori of I.nternodiato
wfng height with constant circulation has been found from
oquatiom (A-13) of tho appendix. (The portinont valu6s---
for tho curvo Elaro pm = 20,5°, sin @ m = 0.350$
Cos p l-r= 099379) Thoso curves tend toward tho value,
zero, as b incroasos indofinitoly; thoso for tho midwing
combinations change more slowly than the others. The rea=
son for this behavior is to be found in equation, (A-16) of
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the appendix. For the midwing combination, L~ approaclies
a finite linit as b becomes infinite, while in the case
of the extremo high-wing combination, L~ approaches zero.

The curves for in,tez%aQdate wing heights will cross tho
axis in general (but see the following discussion); those
for the extrene high-wing and nidwing conbina%ions do note
Also, for the extreae high-wing and midwing corabinations,
LF/L is nunorically larger in the case of nininun induced

drag than in the case of constant circulation.

The a=lysis prosonted in the appendix indicates sono
interesting conclusions in tho case of intoraodiato wing
heights. For l>cospn>o, tho Itft distribution ovor

the fuselage is positivo ov~r that portion of tho fusolago
I$ing botwoen tho vorticul eections through tho wing roots
and is nogativo over tho ro8t of the fusolago- Tho tran-
sition in tho loading b~tweon theso portions occurs by
moans of a jump in tho distribution, as shown later i=.
ftgure 23. Although tho distributions for these intormodi-
ato cases have been found analytically only for the caso
of constant circulation (equations (A-8) and (A-9) of the
appendix), a general consideration of the potential distri-
bution over the fuselage boundary shows that an exactly
similar result is obtained for intermediate wing hetghts
in tho case of minimum induced drag. For tho ideal combi-

:
nations considorod hereiu with any Distribution of circu-
lation, there is gonara,lly a jump in tho loading distribu-

t: tion in the vertical piano through the wing root mhoso
,= magnitudo is P v rR$ whor o ‘R is tho circulation at tho

root. Whothor tho fusolago lift is positivo, nogativo, or
zero doponds on tho relativo aagnitudos of tho areas undor-
noath tho soparato portions of tho distribution curves;
and tho aroaso in turn, dopond on tho wing span, tho wing
height, and tho distribution of circulation alon~g tho wings,
which may bo constant or be that corresponding to minimum
induced drag, etc.

The circumstances under w.~ich the fuselage lift van-
ishes are easily determined for the CQSO of constant cir-
culation. Yror~ equation (A-12) of tho appendix, lot

If this equation is solved for b,
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The firet solution is trivial, for in this case
1ength , 2(b- sin p n), vo,nishes so that the

(82)

the wing
total lift

on the combination vanishes as well~ The second solu-
tion is the desired relation. Figuro 20 shows the. dopond-
onco of this ficritical somispan’f on sin ~ n. Tho dashed
line of figuro 20 roprosonts the equation,

Tho point of intersoctiom of the two curves is found from
thci equation,

and. lies at
-.—.—

Tho graph shows that for pll~45°, ba ~ Sill @ m, tx.o.,

in this range, any wing span necessarily exceeds the crit-
ical value an$ the fuselage lift is necessarily positive..
I’or ~mC45, the fuselage lift is positive, z6ro, or
negative, accordingly as bsb2, b=ba, sin pm:”< b< ba,

For tho oxtromo high-wing (or low-wing) combination,
sin ~ m = O and ba is infi.nito, SO that tho fuso~a~o

lift is negative. In short, for wing heights such that
@’l-r~45°, if tho wing span is incroasod., tho fusolago

lift..docroasos nunorically but remains positivo; for wing
hozghts such that ~ n < 45°, tho fuselage lift is ncga-
tivo for suffictontly small span and, as tho span inoroasos,
passes through tho valuo zero when b = ~, and then be-

comes positive. Tho second caso is illustrated by tho
curv o E of figuro 19.

Finally, it should bo romarkcd that, if tho com~ln=-
tlon is regarded as a sin~lo structure, tho loading dis-
tribution ovor tho width of this structuro is continuous
through tho root socticnne Tho reason for this result is
that , at tho roots, tho load por unit length of tho wing
passes from. P V rR to %%~ro; thoso discontinuitios just

b.alanco thoso in tho fusolago loading. In any case, thoro..__

..
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will bo discontinuitios in the loading OVOr the width of
any particular crosf3 soctiom of the fusolago at tho verti-
cal sootions that pass through tho roots-

Tho analysis presented in th~s section mill be pro-
foundly mo&ifiod for combinations with different fusalage
cross Soationsb For example, if tho sections ‘hro roatangu-
lar, it can be readily soon that for tho oxtromo high-wiag
or low-wing combinations, in which the lifting lino is
tango~t to tho upper or the Iovor surface, respoctivoly,
tho fuselage lift is positivo and that @ortion of tho lift-
ing lino tangent to the fuselago C08EOS to act aB a ~ing.
Thus, tho loadiag distributions of those combinations will
bo totally different from those of the corresponding com-
bi.nati.ons with CiSCU~~5 fUSOhgEJS* The disconnooted com-
binations with rectangular fusolagos will, howovor, bo very
similar to thosq with ciroulur fusolagos. Exporimonts
(roforonoos 9 and 15) also rovoal characteristic diffor~
oncos arising from the shapo of tho fusolago cross section.
Thoso difforonoos in actual combinations ariso from, causes
quito different from thoso doscribod hero.

Daniel Guggenheim School of Aeronautics,
New York University,

New York, N. Y,, November 1940.
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APPENDIX

—
HIGH- AND LOW-WING COMBINATIONS

WITH CONSTANT CIRCUMTION

Agatn the combination shown in figure 2 is considered
but now constant circulation over the lifting lines is as-
sumed. From the Prandtl theory, the vortex sheet in thfs
case dogoneratos into a “horsoshoo vortex, w so that the
flow in tho piano at z = + co 1s that arising from tho
two vortox fllamonts trailing in straight lines from the
wing ttps, with the fuselage cross section as a boundary.
Tho flow in this plane is obtained by rofloctlng thoso vor-
tices in the circle, so that the resulting vortex system
has tho form ehown in figure 23. The vortices outsido tho
circlo havo tho coordinntos,

. ..

x =k~,y = 00s @ 1-r (A-l)

and thoso insido ha.vo tho coordinates,

(A--2)

whoro

c’ = b’ -t- Cosa p TT - (A-3)

In ordor to find the lift distribution over tho fu-8-o-
lago section, tho relation,

—-
dLF
-= Pv(@a -@b)
ax .—

iS used. Tho potontial distribution ovor tho fuselage is
found from elomontary potontial theory,. but caro must bo
taken in oxprossi.ng it mathomatlcally because of its multi-
ple values. .The multiple values are avoided here by the
introduction of a cut in the z-plane between the two vor-
tices outside the oircle. It can be shown from simplo
considerations that this cut must hava tho fern of tho pro-
jection of tho lifting l.ine.on this plane. For the case
considered here, the cut is a horizontal .straight line, as
showm in figure 21- .

—

-,.. ----
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The potential field of the vortices outside the cir-
cle is:

L tan-l 2b (Y - aos B 77) #

‘% A-(Y- COS ~ # - b
s’

Writing

E’> (x,y) = tan
2b (y - Coa pll)

Xz+ (y - CQS j3TT)2- b2

and restricting the tan- i function to its principal val-

ues, -TT/2 ~ tan-L 0 S T/2, the single-valued expression

for this potential is:

Thus , for 1x1 >b, this potential is continuous in pass-
ing through y ,= cos j3m, while for \X~ < b, it increas-
es by I’ in passing through this value.

Similarl~ writing

( Cos fh-r
2%Y-.7

)
F (x,y) = tan

X=:(. -WY-$

Wfth the same restriction on the tan-l function, the po-
tential of the image vortices can be written as



,,-! ;-q”
i
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0= =-~ Fa(xOy)C Xs+ (Y-wy?g

-,—.- .-

..

——.. .—

(A-5)

Thus, for 1%1 > b/ca, this potential i.s continuous in

passing through”” y = QQ&% while for 1%1 < b/ca, i-t

decreases by I’ in passing through this value. In par- ‘

titular, this potential is continuous on the circle. ‘-

The total potential is

@ = al + Q=

.—.—.-
and its distribution over the fusela-ge circle,

aX2 +-y = 1

may be written as
—--

@r [ -1 2b (y - ‘0s pm)

= G ‘an 1 + ‘0s2 @TT - b“ - 2Y ‘os &T

2.(Y-SQA.J59 “
- tan- ~

(’OSa ~m-ba)
2+

1
c - 2, Cos pn_l

● ca

where, if the tan- z functions are restricted to their
principal values, the conditions given in equations (A-4)
and (A-5) must be employed. This distribution is discon-
tinuous at the coordinates, x = ~ sin IT, y = cos n,
which correspond to the wing roots, the potential increas-
ing lJy the value r, in passing upward through these
points. Therefore, the potential distribution can bo
written as:

.,

..— .- - -
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where ●
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(A-6)

(A-7)

c+(y) = 2 tan-l ‘G-+)

2y - Cos @l-r( 1+% c

In this expression, however, values of the tan-l function.
are to be chosen so as to make G(y) continuous over the
circle. From the equations, (A-6) and (A-7) , the lift
distribution over the fuselage width is found to be:

dLF

[
—=Pvr 1. ~ tan-z

4b (C2 - 1) n7

ax c4+l-2(b2-cos2&r) - 4c2(l-xa) 1
?

l-r

Ixt “~ sin p Tr (A-8 )

dLF
—=pVp - ~ tan-l

4b (C2 - l)fi-xa

dx R 2 a s
c4+l-2(b ‘COs ~m) - 4Ca (1-+)

lx! ~ sin J3IT (A-9 )

The error made by Lennertz (reference ~ in treating
this problem was a~parently caused by hik failure to sep-
arate the potential distribution over the fuselage surface
into distinct parts, so that he obtained equation (A-8) as
the lift distribution over the entire width.

These results for the lift distribution are readily
t

.“,.,
r., ;

put into graphical form. Let 1:’:

1) %/=E J
-—-——[t: ~

411 (C2 -
F(x) =;

./
tan- 1

c4+l-2(b2.-cos2 pTr) - 4C2 (1-X2) \$

This. function has the form shown in figure 22. Hence, if
;~~

(dLF/dx/PV r) is plotted against x, the curve shown in l!-
1

figure 23 is obtained. In the special case of the midwing

(co” pTr= 0),

;;[

combination this distribution reduces to ::;

I

:,i

1,.1
‘.-.....-.
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the form obtained by Lennertz, shown in ff ure 24,
f

In the

case of the extreme high-wing (or low-wing
combination

(Cos pl-r=l), the distribution reduces to the form shown
in figure 25. These last two distributions appear in fig-
ures 16 and 180

In order to find the lift on tho fuselage, it is un-
necessary to integrate the lift distribution as Lennortz

has done. Instead, tho total lift on tho combination is
found first- From equation (26)9

L = p V R*P.
J

f(z) dz

m ..

Writing

Z1 =b+icospfi

&L . *1 Am +Itfi-++nn ~.n this case is:

=.1
m I z++,*-z.- 21 -LlnsP— I

r

Z*Z1

—

z. I
z.-#l

—

-d 10E (1 - ‘1 + :%) I
c“

= +logl+— - II

Expand in descending powers of (z +E~)

[

+ Z1 (zz+EJ/c2
f’(z) = * -

‘1 +
z + Z1 z~

z- ~
r

as

r

[

-1
—2b — +*+.

= 2mi Z+zl
z- ~

and

+**

1● 9

(z-%)

.-— .— —

I
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Then

L =.
{

PVR. P ~ 2b %i
(
.1+$

)]

“V”2’C%

This expression for the lift is based on nondimensional
lengths; the dimensional relation is

E II=Pvr

where R is the fuselage

‘2b (l-5) (A-1O)

radius. Thus , for the same cir-

!“”
culation and span length, the extreme high-wing (or low-

~
wing) combination has greater lift than the midwing combi.

~

nation, although for practical values of b, the differ-
ence is negligible; and, in either case, the lift does not
differ greatly from that of an isolated wing of the same
span.

i The lift on the wings is:.

LH = PvrR2 (b- Sin p l-r)

\ Hence,--
LY=L-Lw

( )
=2 PvrR.sinplT- +

& and

(A-n)

(A-12)

t. b>
. sin ~ m -

L:. b- T-J%---
b +COS ~TT

For ;~.emidwing combination,

sin ~ m = 1, Ccs p l-f= o

(A-13)

and
~

g 1
—=
L b+l

(A-14)

● This result is shown
19. For the extreme

graphically by t-he curve 3 of figure
high-wing (or low-win~) combination,

= o, Cos p ~ = * 1
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so that

This result is shown by the curve

Ho ●

—- —.

.

-- -—
812

(A-15)

0 of figure i9.
—.

The limiting case of infinite wing span is of special
interest. For this case, equation (A.-12) reduces to

L~ = 2pVrRsinpm (A-16)

Thus , DE vanishes for the extreme high-wing and low-wing
combinations with infinite wing span, while for the mldwing
combinations

LE =2PVrR (A-17)

The general result, equation (A-16), signifies that for in-
finite span the lift on the combination is just the same
as if the wings were continuous through the fuselage and
tho fuselage removed. The particular result; equation
(A-17), was dori.vod by Lonnortz (referonco 5) by an in-
volved mathematical analysis and has since been verified
by experiment (reference 11).

The analysis presented here applies as well to dis-
connected combinations, i.e., those in which the wings do
not intersect the fusolago but lie at some distance above
or below it. If tho nondimensional height of the lifting
line from the fusolago axis is called h, ft is readily
soon from equations (A-IO) and (A-13) that, in this case,

an~

SO that

and

L
(

=2 PVrRb l-1
ba + ha )

LF
(

1+ =2 PYI’Rb.—
ba + ha )

‘Y 1—= -
L ba+h=l

‘lhus, for such combinations, L~
vanishes for infinito wing span~

This thoorotical result agro~s po

(A-18)

(A-19}

.-...

(A-20)

is always nogati.ve

orly with tho moasuro.

.-
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ments of the foroes acting on the separate members of dis-
connected combinations. In the tests of referenco 12 it
was found that the interference lift forco on tho fuselages
of disconnected high-wing combinations wore predominantly
positive. The reason for this poor agreement appears to
lie in the oreation of a low-pressure region between wing
and fuselage by means of a venturi effect arising from the
finite profile of tho airfoil and the curvature of the
fuselage in side elevation. These quantities do not appear
in the first approximation of the theory used here. The
experiments also reveal (referenco 12) tho presence of an
interforenco lift forco acting on the wing, of which no in-
dication appears in tho theory.

I’iilally, the lifting-line theory yields another inter-
esting result for combinations with constant circulation.
It follows direotly from the last analysis that the lift
distribution over the entire width of the combination,
that is, over both fuselage and wings, depends only on the
positions of the wing roots and wing tips and is ontiroly
independent of the front elevation of the wings.

Other results of the application of the lifting-line
theory to combinations with finite fuselages have been
obtained by Y. Vandrey (roferenco 16).
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